Derivation of scattering contributions from a random-walk
polymer model.
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$Assumptions :={L>0, Rg>0,b>0,q>0, l<sL, 12 0}

Polymer model

We regard a polymer as a random walk of N steps of length b. The total contour length of the
polymerisL=Nb.

We focus on two scatterers at contour lengths 11 and [2 along the polymer. We assume a constant
scattering length density along the polymers. The scatterers are separated by a contour distance of
[=]11-12 | and a spatial distancer.

A Gaussian probability distribution relates the contour and spatial distances as:

3 ) 3r2
Plr_, 1] := Exp[— ]4 tr?
2ntb1l 2b1l

Normalized yes.

rP[r, dr
)
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Lets now calculate all the relevant mean - square distance measures explicitly

Mean - square distance between two scatterers at [2>|1 hence a contour length [2-11 apart :
R2[11_, 12_]= .FP[r’ Abs[12-11]] r®dr

(]
b Abs[11 - 12]

Mean - square end - to - end vector corresponds to 11=0 and [2=L:

R2[0, L] // Simplify
R2[0, L]/. b » 6 RgA2/(L) /l Simplify

bL
6 Rg?

Mean - square end - to - end vector from the end [1=0 to any internal scatterer at 12 unformly dis-
tributed in [0:Ltot]:

1
- fRz[o, 12]1d12
L Jo

bL
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Mean - square end - to - end vector from the other end |12 = L to any internal scatterer |1 uniformly
distributed in [0:L] (by symmetry the same as above):
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Infe]= — J:RZ['Ll, Lld1l1
L

bL
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n-l= %/l. b>6RgAN2/(L) /I Simplify

outl-]= 3 Rgz

What about the mean - square - distance relative to the middle of the chain :

1 L
Y fRZ[ll, —]dlu
L Jo 2

bL
out[+]= ——

4

n-l= %/l. b>6RgA2/(L) /I Simplify

3Rg?

Out[«]=
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Radius of gyration is the mean-square distance averaged over all pairs 11,12 along the chain, the
factor of two in the denominator ensures each pair distance L = [12-11| and |[1-12| is only counted

once:
11
inf-}= RE2 = =— — ‘rﬁRZ[ll, 12]d12d11
2 L2 Jede
bL
out[+]= ——
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n-l= %/l. b>6RgAN2/(L) /I Simplify

out[«]= Rg2
The probability distribution for contour length pairs separated by L on a chain of total length L is :
1
wi- PLIL] = — f‘rm‘ racDe'I.ta['L— Abs[12 - 11]] d12d11 // FullSimplify
L2 Jo Jo

-2 LHeavisideTheta[-1]+2 (—1 + L+ 1 HeavisideTheta[- 1]) HeavisideTheta[-1+ L]
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L2

The probability distribution for a contour length relative to the middle of the chain of length L :

1
ni- PM[L] = — fLD'iracDe'Lta[I- Abs[l1 - Ll2]]d711 Il FullSimplify
L Jo

2 (Heav-i sideTheta[-1] - Heavisi deTheta[—z 1+ L])

Out[+]= =

L

The probability distribution for contour length relative to the end of a chain of total length L is :
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1
wel- PE[L] = — foiracoelta[l- 'Ll]dlll Il FullSimplify
L Jo

HeavisideTheta[l, -1+ L]
L
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n-}- PLot[{PL[1], PM[l], PE[]}/. L » 1 // Evaluate, {1, 0, 1}]

2.0

out[-]= 1.0

0.5

In[+]:= fPL[-L]d-L
(¢}
outf-]= 1

With this we can easily derive the radius of gyration, again we have to take care of double counting
of pairs hence the prefactor:

Form Factor

Using the Debye formula, we can calculate the scattering contribution between any two scatterers
separated by a contour length L along a chain. Contrary to Rg, we count each pair twice when
deriving the average scattering, hence there is no prefactor.

The scattering contribution for two scatterers a contour length | apart along the chain:
Si n[q r]
n7- WL = rP[r, 1] ——— dr
(¢] qr
out[7]= @
The form factor is the scattering due to pairs of contour distance | and averaged over all pairs along
the chain up to length L:
o= f = F‘P[I] PL[d1l
(0]

1
72-726° % _12b L ¢

out[10]= —

b2 LZ q4
We can simplify a lot by recognizing that the expression only depends on the dimensionless vari-

able x defined as: x == g2 b?L = g2 Rg?



4 | RWpolymer.nb

In[11]:=

Out[11]=

In[17]:=

out[17]=

In[13]:=

Out[13]=

In[19]:=

Out[19]=

6 X

F=fl.q- — /I FullSimplify
Lb

2(-1+e*+x)

X2

Reference Debye form factor: The form factor of a polymer was first derived in P . Debye, J . Phys.
Colloid Chem. 51, 18 (1947) .

Form factor amplitude relative to ends
The form factor amplitude relative to a reference point at 11 =0 s the scattering averaged over a

uniform distribution of all scatterers at [2 in [0:Ltot], hence L=[2-11=I2:

1 6 x
Aendl = — fw[lz-O]dIZI. q- — /I Simplify
L Jo Lb

1-¢*

X
References for this expression : B. Hammouda, J . Polym . Sci ., Part B : Polym. Phys . 30, 1387
(1992) .
We can also calculate the form factor amplitude relative to the other end of the chain, hence [2=L-

tot, and we average |1 over an uniform distribution [0:Ltot] hence L=12-11=Ltot-|1. Obviously we get
the same result, since all chain observables are symmetric wrt. swapping the identity of the ends.

1 6 X
Aend2 = — rW[L—'Ll]dl'lll. q- — /I Simplify
L Lb

1-e*

X

Phase factor between the ends

The phase factor is calculated for [1=0 and L2=Ltot, hence L=Ltot without any averaging:

6 X
Psiendlend2 =W¥Y[L]/. q > — /I Simplify
Lb

e—X

Reference : This was already used by Debye to derive the form factor, but in the context of having
the complete scattering expressions for a polymer "A formalism for scattering of complex compos-
ite structures. I. Applications to branched structures of asymmetric sub-units" C. Svaneborgand J.
S . Pedersen J.Chem . Phys. 136,104105 (2012) DOI : http : // dx . doi. org/10.1063/1.3682778
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Form Factor amplitude and phase factors relative to a middle reference point.

Assuming we place a reference point at L/2, what are the form factor amplitude and phase factors?

1 L 6 X
w1~ Amiddle = — fw[Abs[— —11]]dlll l.q-» |— ISimplify
L Jo 2 Lb

2-2¢*?
out[21]s ——————————
X

L 6 X
n2el- Psimiddle2end = '-P[—] l.q- — /I Simplify
2 Lb

out[28]= e—x/Z

Contour distributed reference points:

To calculate the form factor amplitude relative to a uniformly distributed reference point [1in [0:
L], and a uniformly distributed scatterer 12 in [0 : L] we again perform a double average of f[l] using
the distribution of random pair distances PL[l] derived above

6 X
- Acontour = fw[l] PL[l]d1l/. q-» — /I FullSimplify
© Lb

2(-1+e*+x)
outf+]-  ———————

X2

We recognize that the form factor amplitude averaged over random reference points produce the
Debye form factor, since it is exactly the same averages that we perform.

To calculate the average phase factor between the end (11 =0) and a uniformly distributed refer-
ence pointat(2in [0:L]:

1 6 X
- Psiendlcontour = — fW[lz -0]d1l2/. q~> — /I Simplify
L Je Lb

1-¢*

Out[+]=
X

To calculate the average phase factor between the other end (12 =L) and a uniformly distributed
reference pointatlin[0:L]:

1 6 x
n-}- Psiend2contour = — fW[L— 11]d11/. q-» — /I Simplify
(0}

L Lb

1-¢*

Out[«]=
X

Again we recognize that both averages gives exactly the same result, since polymer observables are
symmetric wrt . the ends . We also note that the phase factor between an end and an random
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internal site is identical to the form factor amplitude derived above, since in fact its the same
average we perform.

Finally we derive the phase factor between two randomly picked points along the contour length of
the chain . Hence |1 and [2 are both uniform distributed in [0 : L]:

1 6 X
Psicontour2contour = = rfw[Abs[lz -11]]dl2d11/. g~ — /I FullSimplify
L2 Jo Jo

Lb

2(-1+e7+x)
2

Again as expected this is again identical to the form factor, since its the same averages involved in
its derivation .

Finally, we need the phase factor between the middle point, and any site along the polymer:
1 L 6 X
Psimiddle2contour = — leIJ[Abs[— - 'Ll]]dl'Ll l.q- — /I Simplify
L2 2 Lb
2-2¢?
X
Plots

LogLogP'Lot[{F, Aendl, Amiddle, Abs[Psiendlend2], Abs[Psimiddle2end]}, {x, 0.01, 100},

PlotLabel » "Polymer Scattering terms", AxesLabel -» {"x", "F(x),A(x),Psi(x)"},
PlotLegends -» {"F", "Aend1", "Amiddle", "Psiendlend2", "Ps*im'iddleZend"}]

Polymer Scattering terms

F(x),A(x),Psi(x)
nl
— F
0.100¢ Aend1
Amiddle
0.010¢ — Psiend1end2
—— Psimiddle2end
0.001 |
0.61 0.‘10 1‘ 16 1(;0 X

Guinier - expansion form factor

Clear[Rg2]
Above we derived the mean - square distances explicitly. Here we show how to obtain these from a
Guinier expansion of the various scattering terms.
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The Guinier expansion of F is
1-q°Rg”/3+0(q"

In[a7):= Ser'ies[F I. x> q*Rg2, {q, O, 3}]

Rg2q”

outazl= 1 - +0[q]*

Hence to isolate the radius of gyration in the series:

3(1—Norma1[$er‘ies[F l. x> g?’Rg2, {q, O, 3}]])

In[+]=
2
q

outf-]= Rg2

Guinier - expansions amplitudes and phase factors

The Guinier expansion of Aand Psiare: 1-g*>0<R?>/6+0(g%.

The strange difference between the Guinier expansions of Form Factor and amplitude and phase,
stems from the 1/2 in the definition of the radius of gyration, since we define the Rg such that pair
distances are unique.

Amplitudes. Sigma=1 except for Acontour

ouf-]- AmpLlitudes

q% oR2

Inf- J:= So'Lve[Normal[Ser'i es[Aendl I. x> q*Rg2, {q, 0, 3}]] ==1- , aRZ]
outf+ J= {{URZ -3 Rgz}}

q% oR2

In[+]:= So'Lve[Norma'L[Ser'ies[Am'idd'Le I. x> q*Rg2, {q, 0, 3}]] == 1- , aR2]
3 Rg2
out[-]= {{JRZ - —}}
2
q% oR2
Inf]:= Solve[NormaI[Ser‘ies[Acontour l. x> g° Rg2, {q, O, 3}]] ==1- s aRZ]
our - {{oR2 > 2 Rg2}}
Phases. sigma=1 except for Psicontour2contour
ouf-]- Phases
g% oR2
In[+]:= So'Lve[Normal[Ser-ies[Ps-iend1end2 I. x> q°Rg2, {q, 0, 3}]] ==1- s aRZ]

outf- J= {{URZ -6 Rgz}}
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q% oR2
So'Lve[Normal[Ser'ies[PS'im'iddleZend I. x> q*Rg2, {q, 0, 3}]] ==1- s aRZ]
{{or2 > 3Rg2}}
q°% oR2
So'Lve[Normal[Ser'ies[PS'iendlcontour I. x> q>Rg2, {q, 0, 3}]] ==1- pont ch2]
{{or2 > 3Rrg2}}
q% oR2
So'Lve[Norma'L[Ser'i es[Ps-im-idd'LeZcontour I. x> g*Rg2, {q, 0, 3}]] ==1- , aR2]
3 Rg2
(foras 222
2

q% oR2

Solve[Normal[Ser'ies[PS'icontourzcontour I. x> q*Rg2, {q, 0O, 3}]] ==1- s aRz]

{{aRz -2 Rgz}}

Save example data to file for Validation :

SaveFunction[func_, filename_, NN_, qmin_, gqmax_] :=
Module[{}, Export[f'i'l.ename, {tt, N[func l. x> tt]} &l@

Table[10 A (Log[10, gmax /qgmin]+i /NN +Log[10, qmin]), {i, O, NN}]]]

SaveFunction|[F,
"lhome/zgex/source/SEB/source/Validation/RWpolymer_mathematicalF.dat",
200, 0.01, 20]

/home/zgex/source/SEB/source/Validation/RWpolymer_mathematica/F.dat

SaveFunction[Aendl,
"lhome/zgex/sourcel/SEB/source/Validation/RWpolymer_mathematica/Aend.dat",
200, 0.01, 20]

SaveFunction[Amiddle,
"/home/zqex/source/SEB/source/Validation/RWpolymer_mathematica/Amiddle.dat",
200, 0.01, 20]

/home/zgex/source/SEB/source/Validation/RWpolymer_mathematica/Aend.dat

/home/zgex/source/SEB/source/Validation/RWpolymer_mathematica/Amiddle.dat
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nl-}- SaveFunction[Psiendlend2,

"/home/zgex/sourcel/SEB/source/Validation/RWpolymer_mathematica/Psi_end2end.dat",
200, 0.01, 20]

SaveFunction[Psimiddle2end,
"/home/zgex/sourcel/SEB/source/Validation/RWpolymer_mathematica/Psi_middle2end.dat",
200, 0.01, 20]

SaveFunction[Psimiddle2contour,
"lhome/zqex/source/SEB/source/Validation/RWpolymer_mathematica/Psi_middle2contour.

dat", 200, 0.01, 20]

oui-]- /Thome/zgex/source/SEB/source/Validation/RWpolymer_mathematica/Psi_end2end.dat
out-]- /Thome/zqex/source/SEB/source/Validation/RWpolymer_mathematica/Psi_middle2end.dat

oui-]- /home/zgex/source/SEB/source/Validation/RWpolymer_mathematica/Psi_middle2contour.dat



